
DevOps Module 3: DevOps in Lab
Official Mind Map Supplement

DevOps Module 3
DevOps Lab

DevOps
Specialist

C E R T I F I E D

®

DevOps

T R A I N I N G

®

Arcitura Next-Gen IT Academy - DevOps Specialist Certification Program
Copyright © Arcitura Education Inc. www.arcitura.com

Performance Monitor
Compliance Monitor
Functional/Operational Monitor
SLA Monitor
Audit Monitor
Code Quality Monitor
Availability Monitor
Continuous Testing Monitor

Continuous Monitoring Mechanisms

Planning Tool
Version Control Tool

Development Tool
Source Code Management Repository

Configuration Management Database (CMDB)
Configuration Approval Tool

Issue Tracking System
Build Server

Artifact Repository
Deployment Tool

Operations Tool
Release Management Tool

Policy System
Monitoring Agents

Feedback Tool
CI Server

Deployment Server
Packaging Tool
Reporting Tool

Communication and Collaboration Tool

DevOps Tools, Systems &
Repositories

Rapidly Deploy Infrastructure Resources
Automate Deployment and Recovery
Deploy Consistently
Re-deploy Instead of Repair
Rollback Quickly
Automate Testing and Verification
Validate Before Deployment
Integrate Monitoring and Testing

principlesInfrastructure-as-Code (IaC)

Business
Security
Compliance
Governance
Regulatory
Operational
Performance

policiesPolicy-as-Code (PaC)

Automate Standardization for Continuous Software Releases
Software Configurations and Automated Testing
Programmatic Versioning
Traceable Changes
Deploying Configurations Across Environments
Configuration Status Awareness via Collaboration and Notification

practicesConfiguration-as-Code (CaC)

Culture and Business Strategy
Collaboration and Communication
Automation
Governance and ProcessesDevOps Maturity Assessment

Increased Responsiveness
Rapid Delivery

Responsive Scalability
Increased Reliability

Improved Security
DevOps Benefits

Culture
Collaboration

Automation
Measurement

DevOps Impacts

Development
Operations

QA

DevOps Primary Roles

Continuous Integration (CI)
Continuous Delivery (CD)
Continuous Deployment
Continuous Monitoring

Infrastructure-as-Code (IaC)
Configuration-as-Code (CaC)

Policy-as-Code (PaC)

Key DevOps Practices

Conflicting Culture
Firmly Isolated Dev and Ops
Establishing Unified Metrics

Overlooking Security and Governance
Requirements

Too Much Focus on Tools
Legacy Infrastructure Limitations
Undesirable DevOps Department

Unacceptable Rate of Adoption

DevOps Challenges

Establishing Interoperability Between Development and Operations Teams
Aligning Software Goals across Development and Operations Teams

Increasing the Frequency of Software Releases
Increasing the Speed and Quality of Software Releases

Improving Software Quality in Response to Feedback
Decreasing Lead Times

DevOps Goals

Develop
Build

Integrate
Test

Release
Deploy

Operate

CI/CD Delivery Pipeline

Plan
Create
Verify

Package
Release

Configure
Monitor

Feedback

DevOps Lifecycle Stages

Provisioning Resources
Configuration and Customization
Monitoring
Security and Compliance
Governance
System is Made Available
Optimization and Tuning
De-provisioning

Infrastructure Resource Provisioning
and Development Lifecycle Stages

Cycle Time
Lead Time
Deployment Frequency
Deployment Time
Customer Support Tickets
Availability
Error Rate
Automated Test Pass Percentage
Defect Escape Rate
Service-Level Agreements (SLAs)
Failed Deployments
Application Usage
Application Performance
Mean Time To Detection (MTTD)
Mean Time To Recover (MTTR)
Mean Time To Failure (MTTF)
Mean Time Between Failures (MTBF)

DevOps Metrics

Bugs
Production Issues

DevOps with Microservices
and Containers

CI with Microservices and Containers
CD with Microservices and Containers
Continuous Deployment with Microservices and Containers
IaC, CaC and PaC with Microservices and Containers

DevOps with Cloud Computing

CI with Cloud Computing
CD with Cloud Computing
Continuous Deployment with Cloud Computing
IaC, CaC and PaC with Cloud Computing

Continuous Integration (CI)principles

best practices

Build Binaries Only Once
Use Same Deployment Tool and Method Across

Environments
Carry Out a “Smoke Test” Deployment

If it Fails, Cancel the Deployment

Submit/Build/Test
Use a Central Code Repository

Submit Code Frequently
Create More Builds

Automate Build Creation
Automate Deployment

Test in Staging
Test Before Submit

Do Not Submit on Broken Code
Perform Proper Testing

Share Test Results

Repeatable Reliable Process
Automate Everything

Version Control and Source Control Everything
Prioritize Challenging Tasks

Built-in Quality
Done Means Released

Shared Responsibility of Release Process
Continuous Improvement

Continuous Delivery (CD)

principles

Automated Release Verification
Dependency Management

Infrastructure Resource Staging
Infrastructure Resource Compliance Verification

Continuous Deployment

