
<de�nitions>
 <types>
 ...
 </types>

 <message>
 <part/>
 ...
 </message>

 <portType>
 ...
 </portType>
 ...
</de�nitions>

<Policy>
 <ExactlyOne>
 <All>
 assertions ...
 </All>
 <All>
 assertions ...
 </All>
 </ExactlyOne>
 ...
</Policy>

areas
a�ected

by standardization

<schema>
 <element >
 <complexType>
 <sequence>
 <element .../>
 <element .../>
 <element .../>
 </sequence>
 </complexType>
 </element>
 ...
 ...
</schema>

implementation

parent
business
process

service
consumers

vendor
technology

.NET WS
J2EE

service
composition

members

service
logic

service
contract

Service Level
Agreement

(SLA)
technical Web service contract

service contract

WSDL WS
Policy

XML
schema

task
service A

entity
service A

entity
service B

utility
service A

utility
service B

high
potential

autonomy

dependent
autonomy

dependent
autonomy

low

high

typical
autonomy

level

Standardized Service Contract

"Services within the same service inventory are in
compliance with the same contract design standards."

Service Loose Coupling

"Service contracts impose low consumer coupling
requirements and are themselves decoupled

from their surrounding environment."

Service Abstraction

"Service contracts only contain essential
information and information about services is

limited to what is published in service contracts."

Service Reusability

"Services contain and express agnostic logic and
can be positioned as reusable enterprise resources."

Service Autonomy

"Services exercise a high level of control over
their underlying runtime execution environment."

Service Statelessness

"Services minimize resource consumption by deferring
the management of state information when necessary."

Service Discoverability

"Services are supplemented with communicative meta data
by which they can be effectively discovered and interpreted."

Service Composability

"Services are effective composition participants, regardless
of the size and complexity of the composition."

W

Q R S

K L

G

A D

Development
Project # 20

Development
Project # 21

Development
Project # 22

service inventory

K R S

W

D Q R

A

L P

G

Z B C E

F H I J

M N O

P T

U V X Y

active
+

stateful

active
+

stateless

state data
repository

pre-
invocation

begin
participation

in activity

pause in
activity

participation

continue
activity

participation

pause in
activity

participation

end
participation

in activity
post

invocation

service owners

service consumer
program designers

design speci�cations, source code, etc.

open
access

controlled
access

no
access

service
contract

vendor
technology

the service
logic will be

implemented (and
therefore coupled

to) proprietary
vendor

technology

implementation

.NET WS
J2EE

service
logic

the service
contract can
 be coupled

 to the service
 logic

the service
logic can be
coupled to

multiple services
it may need to

compose

the service contract
and any underlying

logic can be
coupled to a parent

 business process

parent
business
process

the service
logic can be
 coupled to
the service

contract

if the service contract
is coupled to the service logic,

it can assume logic-related
coupling characteristics

the service logic may be
coupled to various resources

that are part of the overall
implementation environment

service
composition

members

Process
Claims.wsdl

Claims.wsdl Validate
Reports.wsdl

Reports.wsdl

Report
Header.xsd

Reports
Detail.xsd

Claim
Header.xsd

Claims
Detail.xsd

Security
Policy.xml

Claim
Policy.xml

Service

Functional Technology

Quality
of

Service
Programmatic

Capability A
Capability B

Service B

Capability A
Capability B

Service C

Capability A
Capability B

Service D

Capability A

Service A

Service
Consumer
Program

A

(2)

(3) (4) (5) (7)

(1)

(6)

detailed concise optimized

Step 1:

Custom design
the Web service
contract.

Step 2:

Import the Web
service contract into
a development
environment.

Step 3:

Build the underlying
solution logic in
support of the
pre-de�ned Web
service contract.

Import

When a service is implemented as a Web service, the service
contract can be comprised of a WSDL definition and multiple
XML schema and policy definitions, as well as supplementary
documents, such as an SLA.

This principle preaches a “contract first” approach to service
delivery, whereby contracts are custom-developed (prior to
the development of the service logic) according to design
standards that apply to all services within a given service
inventory.

Standardized policies and schemas can be centralized so
that one definition represents an “official” set of policy
assertions or complex types that can be referenced by
multiple WSDL definitions.

Chapter 6: Service Contracts
(Standardization and Design)

Contract design standards
can affect and shape
many element
definitions and the
overall structure of
WSDL, XML schema,
and policy definition
documents.

A service contract that is derived from its underlying environ-
ment can end up forming negative types of coupling upon

parts of that environment.

Logic-to-contract coupling is considered a positive form of
coupling because it represents the independent creation of a
contract that is decoupled from the service environment.

Service consumer
programs are required
to couple themselves to
a service’s contract. As a
result, they inherit whatever
forms of negative or
positive coupling that
reside within the service
contract.

This principle relates
to the Contract
Centralization pattern
which dictates that
the service contract
be the sole means of
accessing service
logic and resources.

Chapter 7: Service Coupling
(Intra-Service and Consumer Dependencies)

When determining what
information about a service
should be abstracted, it is
helpful to categorize service
meta data into distinct categories.

The application of this principle
can affect the abstraction of
each of these meta information
types differently.

This principle advocates
the deliberate hiding of

service meta data so that
a minimal amount of infor-

 mation about a service
is accessible to the

outside world.

The application of this principle can effectively turn a service
into a “black box” where the only information made available
about the service is what is published in its contract (which
may encompass what is also published in a service registry).

Therefore, the content of
the service contract itself
is a primary focal point for
which different abstraction
levels exist.

Chapter 8: Service Abstraction
(Information Hiding and Meta Abstraction Types)

A B

G K

X T

As a result of this principle,
service consumer program
designers may be unaware
that a service is composing
others.

This places a great deal of
emphasis on the reliability
and the predictability of a
service, regardless of what
it may be encapsulting
(which also raises issues as
to what should be published
within service SLAs).

service with
redundant

invoice
processing
capabilities

o�cial Invoice
entity service

underlying
service logic

Contract Centralization
ensures that service

consumers only access
a service via its

published service
contract

2

1

Logic Centralization
ensures that service

consumers only have one
access point for any
given body of logic

service
consumerInvoice

ProcInv

“We will not build new
invoice processing

logic because we are
required to use the

existing Invoice
service.”

“Our project team is
required to automate

a new business
process that involves

invoicing functionality
that already exists

within the
Invoice service.”

“Our project team is
required to automate

a PO processing
task for which
solution logic

does not yet exist.”

“We will search the
existing inventory to
con�rm that no one

service already provides
this logic. We will then

build a PO service so that
it can be reused by

others in the future.”

Proliferation of positive
coupling is desirable so

as to allow service
implementations
to evolve without
impacting service

consumers.

Positioning services as
reusable enterprise
resources relates to
the Logic Centralization
design pattern that dictates
that each reusable service
be the sole access point for
the body of logic
it represents.

When combined,
Logic and Contract

Centralization result
in a highly standardized
and normalized service

inventory in full support of
maximizing reusability

potential and loose
consumer coupling.

Chapter 9: Service Reusability
(Commercial and Agnostic Design)

Project delivery processes typically need
to be changed as a result of the
consistent incorporation of this
principle so as to
ensure that Logic
Centralization
is always
respected and
that reuse
potential of
agnostic services
is maximized.

The greatest obstacle to
realizing this principle is usually
associated with overcoming cultural
resistance to these changes.

Service A
Service A Service B Service C

Service A Service B Service C Service A Service B Service C

The more control a service has over its underlying runtime
implementation, the more predictable its runtime behavior
will be. Reducing shared access to service resources and
increasing physical isolation can raise a service's ability to
function autonomously.

The autonomy of individual services is especially important
to the effectiveness of service compositions. Because a
service composing another automatically loses autonomy,
the level of autonomy a composition controller can attain
is often limited to the collective autonomy levels of its
composition members.

Chapter 10: Service Autonomy
(Processing Boundaries and Control)

Chapter 11: Service Statelessness
(State Management Deferral and Stateless Design)

Chapter 12: Service Discoverability
(Interpretability and Communication)

Chapter 13: Service Composability
(Composition Member Design and Complex Compositions)

active

passive

stateful

stateless

context

session

context
data

primary
state

primary
state conditions

types of state
information

types of
context data

context
rules

active

passive

stateful

stateless

context

session

context
data

context
rules

business

Formulas

AddBase
Get
Simulate

state
database

active and stateless

move in-memory
state data

to database
Run

Lab Project

Start

state data
in memory

discovered
service

service
registry

service
contract

The human
searches the
service registry
to locate a service
with the desired
functionality.

The human can then retrieve
the corresponding service
contract. Based on its level
of interpretability, the human
can choose or rule out this
service. If the service does not
have the necessary capabilities,
but still provides a suitable
functional context, it can be
identi�ed as the location to which to
add the required functionality (as an
extension to the service).

2 Based on the registry
record’s level of
discoverability and
interpretability, the
human is able to
discover and identify
a service potentially
capable of ful�lling
its requirements.

service
inventory

the human
owner of

a planned
service consumer

program

3

1
contains meta information
about each service in the

service inventory as well as
a pointer to each service

contract

The centralization of service
contract documents is itself

a contract-related design
standard.

Depending on the nature of its logic and its role within a
composition, a service may need to transition through
different states and may need to manage different types
and amounts of state data.

State data management consumes system resources and
can result in a significant resource burden when multiple
instances of services are
concurrently invoked,
especially with agnostic
services that are involved
in the automation of
multiple business
processes.

Therefore, the temporary
delegation and deferral
of state management
can increase service
scalability and support
a wider range of reuse
and recomposition over
time.

State data is commonly
deferred at runtime allowing

a service to remain active
and stateless while other

processing occurs.

There are different levels of
statelessness a service design
can achieve, depending on the
frequency of state deferral and the quantity of state data
being deferred. These levels are usually specific to each
service capability.

Of the four service meta
information types functional
and quality of service data
are most relevant when
focusing on a service’s
communications quality
for discoverability and
interpretability purposes.

The application of this
principle supports a
standardized process of
service discovery and inerpretation within an organization
through the use of a service registry as the central
repository of service meta data.

Service

Functional Technology

Quality
of

Service
Programmatic

service inventory

service
registry

exists as an
extension of

infrastructure that
supports the

discovery and
interpretation of
services within a

contains services
with contracts
that are ideally

discoverable and
interpretable

independently
from the

Both service contracts and records
within a service registry contain meta
information with discoverability and
interpretability characteristics.

Much of this information
relates to and originates
from the service profile
document that may have
been created and
maintained since the
service was first
conceptualized during
the service modeling
phase (see Chapter 15
and Appendix B).

SOA: Principles of Service Design

Copyright © 2008 SOA Systems Inc.
ISBN: 0132344823, Prentice Hall
(purchase this poster at www.soaposters.com)

by Thomas Erl
www.whatissoa.com
www.soaprinciples.com
www.soapatterns.com
www.soaspecs.com
www.soaglossary.com

www.soabooks.com
www.prenhall.com
www.soasystems.com
www.soaschool.com
www.soamag.com

Prentice Hall
Service-Oriented
Computing Series
from Thomas Erl

units of solution logic
that each address (solve)

a small problem

to solve the big problem,
the units are assembled

into a speci�c con�guration
that allows them to carry

out their solution logic
in a coordinated

manner

Big Problem A

Small
Problem small problems

collectively
represent the
big problem

Small
Problem

Small
Problem

Small
Problem

Small
Problem

Small
Problem

Small
Problem

Small
Problem

Small
Problem

Small
Problem

Small
Problem

Small
Problem

Small
Problem

Small
Problem

Small
Problem

Small
Problem

solves Big Problem A

E F G HA B C D

C

A F

B E D G H

Service-orientation is a design paradigm with a distinct
approach to carrying out a separation of concerns.

Services capable
of addressing
agnostic or
cross-cutting
concerns
can be
repurposed
to solve
multiple
problems.

This requires an effective
means of decomposing
solution logic and
repeatedly
recomposing it
to solve new
problems.

This principle is
primarily concerned
with a service’s ability
to act as an effective composition member so that it can
support the realization of new business requirements that
can be fulfilled by the assembly of service compositions.

The composability
potential of a
service increases
and becomes
increasingly
important as
more services
become available
within a given
service inventory.

A key aspect of this principle and service compositions in
general is that individual concerns are, in fact, solved by
service capabilities because it is the capabilities that are

composed within a
service composition.

Successful service
composition design

relies on the collective
composability potential

of each composition
member.

service inventory for
a speci�c enterprise with

high reuse potential

commercial products for mass
markets and with

high reuse potential

Service-Oriented
Enterprise

Step 1
Step 2
Step 3

...

service
delivery
lifecycle

custom applications for speci�c
enterprise users and with
little-to-no reuse potential

Step 1
Step 2
Step 3

...

custom
development

project
delivery
lifecycle

Step 1
Step 2
Step 3

...

commercial
product
delivery
lifecycle

Commercial
Product
Vendor

Traditional
Enterprise

Within service-orientation
reusability represents
a core target design
characteristic that
is tied to the goal
of achieving
repeated ROI for
agnostic services.

This principle combines
techniques from tradi-
tional commercial
product design with
traditional enterprise
project delivery.

Access control
procedures can
therefore
become a
requirement
that may
need to be
addressed on an
organizational
level via the
introduction
of new or
modified
processes.

designer of potential
service consumer program

service implementation
and design details

optimized
service contract

service

A key goal of this
principle is to enable

a wide range of project
team members to effectively carry out the discovery process

and not to limit it to those with technical expertise.

Service consumer
designers may not

be aware of the fact
that the contract their
program is forming a

dependency on is
negatively coupled.

This can lead to various
forms of “indirect” or

unintentional coupling.

Proliferation of negative
coupling is undesirable

because it leads to a
fragile and inflexible

service inventory
reminiscent of

past integration
architectures.

